{ Drupal 8 }

{ Drupal 8 }

Or, How | Learned to Stop Worrying
and Love the Service

What Has Changed?

PSR-4

Symfony

Everything is a Service
o Except when it's a Plugin
o Ora Utility

o OraHook
o Or something else

Instead of Menus we have Routes and Controllers (and Links)
There is caching (it's complicated)
Everything is registered with YAML

o Except when it uses Annotations
o Orinfo Hooks

Composer and Console and Config (oh my!)

PSR-4

e The current standard for auto-loading classes in PHP
o Forget about PSR-0

| want to load my utility class called SpecialString. It lives in:
/modules/custom/hello module/src/Utility/SpecialString.php
And it has the namespace declaration:
namespace \Drupall\hello module\Utility;
So | can include it in another file with:
use \Drupall\hello module\Utility\SpecialString;

e The important bits are the namespace and file path
e The autoloader fills in the intermediate parts, and will look in other places

o e.gcore/modules/module name/src/..

PSR-4

If you want to see how this works, check out autoload real.php

Executed via Composer in the /vendor directory

Some Drupal secret sauce makes the paths work seamlessly

There are some conventions that make it easier to navigate Drupal code
o Plugins generally have their own subdirectory e.g. src/Plugin/Block

You can probably guess what goes in these directories

src/Annotation
src/Controller
src/Entity

src/Form

o O O O O

src/Plugin/FieldFormatter

Symfony

Symfony works under the hood
Drupal 8 uses some core Symfony concepts:

(@)

o O O O

Services
Controllers
Routes
Config
Events

Some related concepts and libraries:

(@)

(@)

(@)

Dependency Injection

Annotations

Twig

And some things that are layered on top:

(@)

Plugins

Services

Largely replace hooks for specific functionality
o Sending emails

o Caching
o Storage
o Logging

o Serialization
You can see core Services (and Plugins) in core.services.yml
Should always be accessed via the service container

o \Drupal::service('date')

0 \Drupal::translation()

These are fairly standard Symfony components, so the docs are useful

Plugins

Largely replace hooks for specific functionality with a user-configurable GUI
o Sending emails (I lied)
o Blocks
o Field Formatters
o Views components
Registered and discovered with Annotations
o These use a standard syntax (Doctrine) with custom formats
o You can look these up for each Plugin type if you need a reference
A Plugin implementation requires
o Annotation definition
o Plugin Manager (and interface), to deal with management and DI
o Plugin Base (and interface)

The core Block code in core/1ib/Drupal/Core/Block is a good example

http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html?highlight=annotations

Components and Utilities

e Some really basic functionality is provided as core classes
Xss
Image
Number
Bytes
Unicode
DateTime
Transliteration
Diff
o etc.
e You can see these in core/lib/Drupal/Component

e [|'m unclear as to how overridable these are

o O O O O O o o

Events

Another core Symfony concept

A small set of core Events are available
o https://api.drupal.org/api/drupal/corelcore.api.php/group/events

Allow Services to dispatch events when things happen
You can create your own Service to react to them

This is used in core to handle things like
o Rendering the page to the user
m /core/lib/Drupal/Core/MainContentViewSubscriber
o Logging Exceptions
m /core/lib/Drupal/Core/ExceptionlLoggingSubscriber
o Altering Routes
m /core/lib/Drupal/Core/EventSubscriber/EntityRouteAlterSubscriber

https://api.drupal.org/api/drupal/core!core.api.php/group/events

Hooks

They still exist in core

o https://api.drupal.org/api/drupal/core!core.api.php/group/hooks
Altering primarily still uses Hooks (rather than, say, Events)
This is the source of a lot of ‘messy’ code

o Mixing of old and new paradigms

o Don’t have convenient ways to access relevant Services
o Don’t have convenient methods a Service or Plugin would provide

These will still generally live in a .module file or an include

https://api.drupal.org/api/drupal/core!core.api.php/group/hooks

Routes

The actual URL paths and the behaviour associated with them are much
more separate in Drupal 8

Routes manage the URL paths

They’re generally defined in module name.routing.yml

They still do some of the magic that you got in Drupal 7

There are other ways of defining routes e.g. entity.{type}.canonical
o See \Drupal\Core\Entity\Routing\DefaultHtmlRouteProvider.php
o For nodes we have NodeRouteProvider.php

Routes

Manual route discovery is a bit confusing, because routes are either defined:
© Inamodule name.routing.yml file
o InaRouteProvider class
However, they’re all rebuilt via the core RouteBuilder
o Thisis the route.builder service, and can be invoked with
\Drupal::service ('router.builder')->rebuild/()
Routes defined in *. routing.yml are handled directly in RouteBuilder
o RouteBuilder->rebuild () then rebuilds all routes via getRouteDefinitions ()
o It also dispatches the events that RouteSubscribers can respond to
A RouteProvider isinvoked by a RouteSubscriber

For entities this is the EntityRouteProviderSubscriber
onDynamicRouteEvent () invokes the defined route provider

This RouteProvider is provided as part of the Entity Plugin annotation
See \Drupal\core\modules\node\src\Entity\Node.php

O O O O

drupal flush all caches()

L]

YAML Definition \Drupal::service ('router.builder')->rebuild(); RouteProvider Definition

RouteBuilder RouteBuilder

Sthis
getRouteDefinitions () ->dispatcher

->dispatch (

RoutingEvents: :DYNAMIC,

new RouteBuildEvent ($collection)
)

EntityRouteProviderSubscriber

onDynamicRouteEvent ()

NodeRouteProvider

|IIE%H%HHHHHIIII|

Routes

Still have a lot of the same magic properties as in Drupal 7
o Wildcards
o Named placeholders
Some new functionality
o If a placeholder has the same name as an entity type, will try and upcast it and pass it on
o See https://www.drupal.org/node/2122223
There’s a lot of complexity you can add

Not something I've done much with
o https://www.drupal.org/docs/8/api/routing-system

https://www.drupal.org/node/2122223
https://www.drupal.org/docs/8/api/routing-system

Controllers

e Deliver the content from a Route
o Replace menu callbacks from Drupal 7

e Pretty simple—most of the complexity exists in the Route definition

example.content:
path: '/example’
defaults:
_controller: '\Drupallexample\Controller\ExampleController::content'
_title: 'Hello World'
requirements:
_permission: 'access content’

namespace Drupall\example\Controller;
use Drupal\Core\Controller\ControllerBase;

/**
* An example controller.
*/
class ExampleController extends ControllerBase {

/**
* {@inheritdoc}
*/
public function content() {
$build = [
"#markup' => t('Hello World!'"),
1;
return $build;
}

namespace Drupall\dino roar\Controller;

use
use
use
use
use

/**

Drupal\Core\Contrgller\ControllerBase;
Drupal\Core\Logger\LoggerChannelFactoryInterface;
Drupal\dino_roar\Jurassic\RoarGenerator;
Symfony\Component\DependencyInjection\ContainerInterface;
Symfony\Component\HttpFoundation\Response;

* Class RoarController.

*/

class RoarController extends ControllerBase {

private S$roarGenerator;
protected $loggerFactory;

public function __ construct(RoarGenerator $roarGenerator, LoggerChannelFactoryInterface $loggerFactory)

}

$this->roarGenerator = $roarGenerator;
$this->loggerFactory = $loggerFactory;

public static function create (ContainerInterface $container) {

}

/* @var $roarGenerator \Drupal\dino_roar\Jurassic\RoarGenerator */
SroarGenerator = $container->get('dino_roar.roar generator');

/* @var $loggerFactory \Drupal\Core\Logger\LoggerChannelFactoryInterface */
$loggerFactory = $container->get('logger.factory');

return new static($roarGenerator, $loggerFactory) ;

public function roar($count) {

}

$roar = $this->roarGenerator->getRoar ($count) ;
$this->loggerFactory->get ('default')->debug($roar) ;
return new Response ($roar) ;

{

Menu Links

A mechanism to associate URLs with routes

This is much more flexible than the Drupal 7 system

o Easy to point multiple URLs at the same route
o Routes do not have to follow the same hierarchy as links

Various kinds of links that can be defined
o Similarto type from hook menu definition

Not something I've done much with
o https://www.drupal.org/docs/8/api/menu-api/comparison-of-menu-api-in-drupal-7-and-8

https://www.drupal.org/docs/8/api/menu-api/comparison-of-menu-api-in-drupal-7-and-8

Caching

Instead of cache bins we now have three ways to manage render caching:
o Tags (these items relate to a particular node)
o Contexts (this item relates to a particular theme)
o Max-age (this should only be cached for 10 minutes)
Much easier to clear related cache items by tag
o This is why caching is now enabled by default
o Caching information is also exposed to external caches
To turn off caching, you can replace the cache backend service
o Drupal provides configuration you can enable to do this
o You can toggle this using Console with drupal site:mode
o See hitps://www.drupal.org/node/2598914
This is one of the parts I'm less familiar with
o https://www.drupal.org/docs/8/api/cache-api/cache-api
o https://dri.es/making-drupal-8-fly

https://www.drupal.org/node/2598914
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://dri.es/making-drupal-8-fly

YAML

YAML is now the markup language of choice
o Replaces the .ini format used in Drupal 7

Used in lots of places for registering code or functionality

e} *
O *
O *

O *

.services.yml
.libraries.yml
.routing.yml
.links.*.yml

Not used for registering Plugins
o There are lots of discussions about Annotations vs. other formats
o The main justification for not using a separate YAML manifest is to keep the metadata in the
same file as the Plugin
o Personally I'd prefer this to be implemented in the same way as Services for consistency

It is theoretically possible to use YAML-based discovery if you want to

https://www.drupal.org/project/drupal/issues/2919424
https://www.drupal.org/project/drupal/issues/1683644
https://www.drupal.org/project/drupal/issues/2065571
https://www.drupal.org/project/drupal/issues/2919424#comment-12319297

Composer

Modules are now managed via composer
o This also takes care of PHP package dependencies
o This does not manage non-PHP libraries (e.g. a WYSIWYG editor)

You can install modules from drupal.org with:

0 composer require drupal/module name

You can install specific versions or ranges with semantic versions:

0 composer require drupal/module name:1.2.3

0 composer require drupal/module name:~1.0

The documentation is pretty good

o hitps://www.drupal.org/docs/develop/using-composer

o https://www.drupal.org/docs/develop/using-composer/using-composer-to-manage-drupal-site-
dependencies

Don’t use drupal-composer-init unless you have a good reason

https://www.drupal.org/docs/develop/using-composer/using-composer-to-manage-drupal-site-dependencies#specify-version
https://www.drupal.org/docs/develop/using-composer
https://www.drupal.org/docs/develop/using-composer/using-composer-to-manage-drupal-site-dependencies
https://www.drupal.org/docs/develop/using-composer/using-composer-to-manage-drupal-site-dependencies
https://github.com/hussainweb/drupal-composer-init

Console

This does not replace Drush (but does overlap with it)
o Alot of the core commands have a synonym, but the contrib ones don’t

Similar to the Symfony console

Does useful things like:
o Code scaffolding with drupal generate:*
o Debugging of code definitions with drupal debug:*
o Dummy content generation with drupal create:*
It also does some things Drush does:
0 drupal site:status

0 drupal site:maintenance

Requires both a global and per-site installation

See the documentation for many more commands

o https://hechoendrupal.gitbooks.io/drupal-console/content/en/commands/available-commands.
html

https://hechoendrupal.gitbooks.io/drupal-console/content/en/commands/available-commands.html
https://hechoendrupal.gitbooks.io/drupal-console/content/en/commands/available-commands.html

A Note on Drush

There is now a stable release of Drush 9
This does not work with Drupal 7
You'll need to either have both versions available, or stick with Drush 8 for

now
o Multi-versioning is probably preferable if you’re working with Drupal 8
o https://www.lullabot.com/articles/switching-drush-versions

https://www.lullabot.com/articles/switching-drush-versions

Config

A core mechanism to define complex, exportable configuration

This exists in conjunction with State

o State effectively replaces Variables for ephemeral, per-env settings
o Config is for permanent, exportable, cross-env settings

Config can be exported from core as . yml files
o It's quite a monolithic process

Would strongly encourage the use of Config Filter and Config Split
Requires a level of process to prevent tricky merging
Effectively deprecates Features

Drupal 7

e Will continue to get security fixes until Drupal 9 enters LTS
o Drupal 6.0 February 13" 2008
o Drupal 7.0 January 5" 2011
o Drupal 8.0.0 November 191" 2015
o Drupal 9.0.0 2019/2020?

e |t's not dead vet

150000
o || 5x B 6x
B 7x B 8x
100000 M | Total
0
500000
——— it
v M
W’
0

Jan 2013 Jul 2013 Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016 Jul 2016 Jan 2017 Jul 2017 Jan 2018

https://www.drupal.org/project/usage/drupal

My Take

Drupal 8 struggled to get a stable release
o It's still having issues two years later
o Adoption is pretty poor, considering how quick the D7 uptake was
o lItfeels like they severely underestimated the amount of onboarding needed for the
development community
There’s a lot of good stuff
o But some of it is bloody complicated or lacks decent documentation

Issues are somewhat understandable given the level of architectural changes

The main problem is that you’re forced to think in two paradigms
o It's the offspring of Symfony and Drupal 7

| think we’ll see the shift in D8>D9 as we did in D6>D7

o No major architectural changes, but a solidification of the core concepts
o Unfortunately this is a long way off

The End

