
{ Drupal 8 }

{ Drupal 8 }
Or, How I Learned to Stop Worrying

and Love the Service

What Has Changed?

● PSR-4
● Symfony
● Everything is a Service

○ Except when it’s a Plugin
○ Or a Utility
○ Or a Hook
○ Or something else

● Instead of Menus we have Routes and Controllers (and Links)
● There is caching (it’s complicated)
● Everything is registered with YAML

○ Except when it uses Annotations
○ Or info Hooks

● Composer and Console and Config (oh my!)

PSR-4

● The current standard for auto-loading classes in PHP
○ Forget about PSR-0

I want to load my utility class called SpecialString. It lives in:
/modules/custom/hello_module/src/Utility/SpecialString.php

And it has the namespace declaration:
namespace \Drupal\hello_module\Utility;

So I can include it in another file with:
use \Drupal\hello_module\Utility\SpecialString;

● The important bits are the namespace and file path
● The autoloader fills in the intermediate parts, and will look in other places

○ e.g core/modules/module_name/src/..

PSR-4

● If you want to see how this works, check out autoload_real.php
● Executed via Composer in the /vendor directory
● Some Drupal secret sauce makes the paths work seamlessly
● There are some conventions that make it easier to navigate Drupal code

○ Plugins generally have their own subdirectory e.g. src/Plugin/Block

● You can probably guess what goes in these directories
○ src/Annotation
○ src/Controller
○ src/Entity
○ src/Form
○ src/Plugin/FieldFormatter

Symfony

● Symfony works under the hood
● Drupal 8 uses some core Symfony concepts:

○ Services
○ Controllers
○ Routes
○ Config
○ Events

● Some related concepts and libraries:
○ Dependency Injection
○ Annotations
○ Twig

● And some things that are layered on top:
○ Plugins

Services

● Largely replace hooks for specific functionality
○ Sending emails
○ Caching
○ Storage
○ Logging
○ Serialization

● You can see core Services (and Plugins) in core.services.yml
● Should always be accessed via the service container

○ \Drupal::service('date')
○ \Drupal::translation()

● These are fairly standard Symfony components, so the docs are useful

Plugins

● Largely replace hooks for specific functionality with a user-configurable GUI
○ Sending emails (I lied)
○ Blocks
○ Field Formatters
○ Views components

● Registered and discovered with Annotations
○ These use a standard syntax (Doctrine) with custom formats
○ You can look these up for each Plugin type if you need a reference

● A Plugin implementation requires
○ Annotation definition
○ Plugin Manager (and interface), to deal with management and DI
○ Plugin Base (and interface)

● The core Block code in core/lib/Drupal/Core/Block is a good example

http://doctrine-orm.readthedocs.io/en/latest/reference/annotations-reference.html?highlight=annotations

Components and Utilities

● Some really basic functionality is provided as core classes
○ Xss
○ Image
○ Number
○ Bytes
○ Unicode
○ DateTime
○ Transliteration
○ Diff
○ etc.

● You can see these in core/lib/Drupal/Component
● I’m unclear as to how overridable these are

Events

● Another core Symfony concept
● A small set of core Events are available

○ https://api.drupal.org/api/drupal/core!core.api.php/group/events

● Allow Services to dispatch events when things happen
● You can create your own Service to react to them
● This is used in core to handle things like

○ Rendering the page to the user
■ /core/lib/Drupal/Core/MainContentViewSubscriber

○ Logging Exceptions
■ /core/lib/Drupal/Core/ExceptionLoggingSubscriber

○ Altering Routes
■ /core/lib/Drupal/Core/EventSubscriber/EntityRouteAlterSubscriber

https://api.drupal.org/api/drupal/core!core.api.php/group/events

Hooks

● They still exist in core
○ https://api.drupal.org/api/drupal/core!core.api.php/group/hooks

● Altering primarily still uses Hooks (rather than, say, Events)
● This is the source of a lot of ‘messy’ code

○ Mixing of old and new paradigms
○ Don’t have convenient ways to access relevant Services
○ Don’t have convenient methods a Service or Plugin would provide

● These will still generally live in a .module file or an include

https://api.drupal.org/api/drupal/core!core.api.php/group/hooks

Routes

● The actual URL paths and the behaviour associated with them are much
more separate in Drupal 8

● Routes manage the URL paths
● They’re generally defined in module_name.routing.yml
● They still do some of the magic that you got in Drupal 7
● There are other ways of defining routes e.g. entity.{type}.canonical

○ See \Drupal\Core\Entity\Routing\DefaultHtmlRouteProvider.php
○ For nodes we have NodeRouteProvider.php

Routes

● Manual route discovery is a bit confusing, because routes are either defined:
○ In a module_name.routing.yml file
○ In a RouteProvider class

● However, they’re all rebuilt via the core RouteBuilder
○ This is the route.builder service, and can be invoked with

\Drupal::service('router.builder')->rebuild()

● Routes defined in *.routing.yml are handled directly in RouteBuilder
○ RouteBuilder->rebuild() then rebuilds all routes via getRouteDefinitions()
○ It also dispatches the events that RouteSubscribers can respond to

● A RouteProvider is invoked by a RouteSubscriber
○ For entities this is the EntityRouteProviderSubscriber
○ onDynamicRouteEvent() invokes the defined route provider
○ This RouteProvider is provided as part of the Entity Plugin annotation
○ See \Drupal\core\modules\node\src\Entity\Node.php

YAML Definition RouteProvider Definition

Routes

● Still have a lot of the same magic properties as in Drupal 7
○ Wildcards
○ Named placeholders

● Some new functionality
○ If a placeholder has the same name as an entity type, will try and upcast it and pass it on
○ See https://www.drupal.org/node/2122223

● There’s a lot of complexity you can add
● Not something I’ve done much with

○ https://www.drupal.org/docs/8/api/routing-system

https://www.drupal.org/node/2122223
https://www.drupal.org/docs/8/api/routing-system

Controllers

● Deliver the content from a Route
○ Replace menu callbacks from Drupal 7

● Pretty simple—most of the complexity exists in the Route definition

example.content:

 path: '/example'

 defaults:

 _controller: '\Drupal\example\Controller\ExampleController::content'

 _title: 'Hello World'

 requirements:

 _permission: 'access content'

namespace Drupal\example\Controller;

use Drupal\Core\Controller\ControllerBase;

/**

 * An example controller.

 */

class ExampleController extends ControllerBase {

 /**

 * {@inheritdoc}

 */

 public function content() {

 $build = [

 '#markup' => t('Hello World!'),

];

 return $build;

 }

}

namespace Drupal\dino_roar\Controller;
use Drupal\Core\Controller\ControllerBase;
use Drupal\Core\Logger\LoggerChannelFactoryInterface;
use Drupal\dino_roar\Jurassic\RoarGenerator;
use Symfony\Component\DependencyInjection\ContainerInterface;
use Symfony\Component\HttpFoundation\Response;

/**
 * Class RoarController.
 */
class RoarController extends ControllerBase {

 private $roarGenerator;
 protected $loggerFactory;

 public function __construct(RoarGenerator $roarGenerator, LoggerChannelFactoryInterface $loggerFactory) {
 $this->roarGenerator = $roarGenerator;
 $this->loggerFactory = $loggerFactory;
 }

 public static function create(ContainerInterface $container) {
 /* @var $roarGenerator \Drupal\dino_roar\Jurassic\RoarGenerator */
 $roarGenerator = $container->get('dino_roar.roar_generator');

 /* @var $loggerFactory \Drupal\Core\Logger\LoggerChannelFactoryInterface */
 $loggerFactory = $container->get('logger.factory');

 return new static($roarGenerator, $loggerFactory);
 }

 public function roar($count) {
 $roar = $this->roarGenerator->getRoar($count);
 $this->loggerFactory->get('default')->debug($roar);
 return new Response($roar);
 }
}

Menu Links

● A mechanism to associate URLs with routes
● This is much more flexible than the Drupal 7 system

○ Easy to point multiple URLs at the same route
○ Routes do not have to follow the same hierarchy as links

● Various kinds of links that can be defined
○ Similar to type from hook_menu definition

● Not something I’ve done much with
○ https://www.drupal.org/docs/8/api/menu-api/comparison-of-menu-api-in-drupal-7-and-8

https://www.drupal.org/docs/8/api/menu-api/comparison-of-menu-api-in-drupal-7-and-8

Caching

● Instead of cache bins we now have three ways to manage render caching:
○ Tags (these items relate to a particular node)
○ Contexts (this item relates to a particular theme)
○ Max-age (this should only be cached for 10 minutes)

● Much easier to clear related cache items by tag
○ This is why caching is now enabled by default
○ Caching information is also exposed to external caches

● To turn off caching, you can replace the cache backend service
○ Drupal provides configuration you can enable to do this
○ You can toggle this using Console with drupal site:mode
○ See https://www.drupal.org/node/2598914

● This is one of the parts I’m less familiar with
○ https://www.drupal.org/docs/8/api/cache-api/cache-api
○ https://dri.es/making-drupal-8-fly

https://www.drupal.org/node/2598914
https://www.drupal.org/docs/8/api/cache-api/cache-api
https://dri.es/making-drupal-8-fly

YAML

● YAML is now the markup language of choice
○ Replaces the .ini format used in Drupal 7

● Used in lots of places for registering code or functionality
○ *.services.yml
○ *.libraries.yml
○ *.routing.yml
○ *.links.*.yml

● Not used for registering Plugins
○ There are lots of discussions about Annotations vs. other formats
○ The main justification for not using a separate YAML manifest is to keep the metadata in the

same file as the Plugin
○ Personally I’d prefer this to be implemented in the same way as Services for consistency

● It is theoretically possible to use YAML-based discovery if you want to

https://www.drupal.org/project/drupal/issues/2919424
https://www.drupal.org/project/drupal/issues/1683644
https://www.drupal.org/project/drupal/issues/2065571
https://www.drupal.org/project/drupal/issues/2919424#comment-12319297

Composer

● Modules are now managed via composer
○ This also takes care of PHP package dependencies
○ This does not manage non-PHP libraries (e.g. a WYSIWYG editor)

● You can install modules from drupal.org with:
○ composer require drupal/module_name

● You can install specific versions or ranges with semantic versions:
○ composer require drupal/module_name:1.2.3
○ composer require drupal/module_name:~1.0

● The documentation is pretty good
○ https://www.drupal.org/docs/develop/using-composer
○ https://www.drupal.org/docs/develop/using-composer/using-composer-to-manage-drupal-site-

dependencies

● Don’t use drupal-composer-init unless you have a good reason

https://www.drupal.org/docs/develop/using-composer/using-composer-to-manage-drupal-site-dependencies#specify-version
https://www.drupal.org/docs/develop/using-composer
https://www.drupal.org/docs/develop/using-composer/using-composer-to-manage-drupal-site-dependencies
https://www.drupal.org/docs/develop/using-composer/using-composer-to-manage-drupal-site-dependencies
https://github.com/hussainweb/drupal-composer-init

Console

● This does not replace Drush (but does overlap with it)
○ A lot of the core commands have a synonym, but the contrib ones don’t

● Similar to the Symfony console
● Does useful things like:

○ Code scaffolding with drupal generate:*
○ Debugging of code definitions with drupal debug:*
○ Dummy content generation with drupal create:*

● It also does some things Drush does:
○ drupal site:status
○ drupal site:maintenance

● Requires both a global and per-site installation
● See the documentation for many more commands

○ https://hechoendrupal.gitbooks.io/drupal-console/content/en/commands/available-commands.
html

https://hechoendrupal.gitbooks.io/drupal-console/content/en/commands/available-commands.html
https://hechoendrupal.gitbooks.io/drupal-console/content/en/commands/available-commands.html

A Note on Drush

● There is now a stable release of Drush 9
● This does not work with Drupal 7
● You’ll need to either have both versions available, or stick with Drush 8 for

now
○ Multi-versioning is probably preferable if you’re working with Drupal 8
○ https://www.lullabot.com/articles/switching-drush-versions

https://www.lullabot.com/articles/switching-drush-versions

Config

● A core mechanism to define complex, exportable configuration
● This exists in conjunction with State

○ State effectively replaces Variables for ephemeral, per-env settings
○ Config is for permanent, exportable, cross-env settings

● Config can be exported from core as .yml files
○ It’s quite a monolithic process

● Would strongly encourage the use of Config Filter and Config Split
● Requires a level of process to prevent tricky merging
● Effectively deprecates Features

Drupal 7

● Will continue to get security fixes until Drupal 9 enters LTS
○ Drupal 6.0 February 13th 2008
○ Drupal 7.0 January 5th 2011
○ Drupal 8.0.0 November 19th 2015
○ Drupal 9.0.0 2019/2020?

● It’s not dead yet

https://www.drupal.org/project/usage/drupal

My Take

● Drupal 8 struggled to get a stable release
○ It’s still having issues two years later
○ Adoption is pretty poor, considering how quick the D7 uptake was
○ It feels like they severely underestimated the amount of onboarding needed for the

development community

● There’s a lot of good stuff
○ But some of it is bloody complicated or lacks decent documentation

● Issues are somewhat understandable given the level of architectural changes
● The main problem is that you’re forced to think in two paradigms

○ It’s the offspring of Symfony and Drupal 7

● I think we’ll see the shift in D8>D9 as we did in D6>D7
○ No major architectural changes, but a solidification of the core concepts
○ Unfortunately this is a long way off

The End

