
Rails and Zeitwerk



What is Zeitwerk

● Zeitwerk is an autoloader for Ruby files
● It replaces the “classic” Rails autoloader
● Lets us choose where to load code from
● Means we don’t have to put “require” statements 

everywhere
● Makes it easier to relocate classes
● Unlocks the use of Packwerk components



How does it know how to find my code?

● Naming conventions!
○ Similar to PHP’s PSR-4

● For each root directory, subdirectories define modules
● Each subdirectory requires a new module
● Names are uniformly formatted as CamelCase
● If files or classes don’t match the expected convention, 

Zeitwerk will refuse to load it
● We tell Zeitwerk which directories to look in, and it does 

the rest
● By default the root namespace is Object but this is also 

configurable for a root directory



How does it werk?

● Makes use of the .autoload() method
● This is a core Ruby method on all objects
● Lets us tell Ruby where to load a class from
● The root namespace is Object



A simple example

● An example of a very simplified autoloader that 
uses the principles Zeitwerk does

● We create a class that will store an internal 
reference to the current loader if it exists

https://github.com/benkyriakou/ztwrk

https://github.com/benkyriakou/ztwrk


A simple example

● Now we add the main loading method
● This first autoloads namespaces from Ruby files
● Then it autoloads any undefined namespaces from 

subdirectories
● constant_ref is the equivalent of Zeitwerk’s cref 

method
○ Takes a camelized relative path like “Foo::Bar”
○ Returns the namespace (constant Foo) and the 

element (symbol :Bar)

https://github.com/benkyriakou/ztwrk

https://github.com/benkyriakou/ztwrk


A simple example

● Finally we add “autovivification”
● This allows the loader to create module 

namespaces for subdirectories without actually 
loading anything

https://github.com/benkyriakou/ztwrk

https://github.com/benkyriakou/ztwrk


Zeitwerk in Rails



Zeitwerk in Rails

● Set up your autoload configuration in 
application.rb using config.autoload_paths

● This is passed to the autoloaders in 
zeitwerk_integration.rb

● This populates the autoloaders from the Rails 
configuration defined

● There are two autoloaders set up
○ Rails.autoloaders.main
○ Rails.autoloaders.once

https://guides.rubyonrails.org/
autoloading_and_reloading_constants.html 

https://guides.rubyonrails.org/autoloading_and_reloading_constants.html
https://guides.rubyonrails.org/autoloading_and_reloading_constants.html


Zeitwerk in Rails

● By default it adds all subdirectories of /app to 
autoload_paths

● This does not work with most of our 
namespaces, so we have to do some custom 
configuration

● We also have to add /lib as this has been 
retired as a standard load path in Rails

https://guides.rubyonrails.org/
autoloading_and_reloading_constants.html 

https://guides.rubyonrails.org/autoloading_and_reloading_constants.html
https://guides.rubyonrails.org/autoloading_and_reloading_constants.html


Useful things to know



Useful things to know

● Loading in files in a non-Zeitwerk order (e.g. 
requiring something during bootstrap) can break 
the expected autoloading
○ e.g. if Foo::Bar is loaded during bootstrap, 

Foo can no longer be autoloaded as the 
namespace is taken

● You can enable logging in application.rb
○ This outputs a lot of debugging 

information about what is loaded

https://guides.rubyonrails.org/
autoloading_and_reloading_constants.html 

https://guides.rubyonrails.org/autoloading_and_reloading_constants.html
https://guides.rubyonrails.org/autoloading_and_reloading_constants.html


Useful things to know

● If your code needs to reload with the application, 
or if you want to autoload constants during 
initialization, you should use the application 
reloader

● We use this in some of our initializers already
● This has proved more reliable than the Zeitwerk 

autoloader’s on_load method

https://guides.rubyonrails.org/
autoloading_and_reloading_constants.html 

https://guides.rubyonrails.org/autoloading_and_reloading_constants.html
https://guides.rubyonrails.org/autoloading_and_reloading_constants.html


Questions?


