Ralls and Zeitwerk

GOCARDLESS

What is Zeitwerk

require
require

Zeitwerk
Loader
require_relative
require_relative

Zeitwerk is an autoloader for Ruby files require_relative

It replaces the “classic” Rails autoloader include RealModName
include Callbacks

Lets us choose where to load code from include Helpers

include Config

Means we don't have to put “require” statements
everywhere

Makes it easier to relocate classes

Unlocks the use of Packwerk components

attr_reader :autoloads

File structure

How does it know how to find my code?

The idea: File paths match constant paths

To have a file structure Zeitwerk can work with, just name files and directories after the name of the classes and
modules they define:

lib/my_gem.rb -> MyGem
lib/my_gem/foo.rb —> MyGenm: : Foo
lib/my_gem/bar_baz.rb —-> MyGenm: :BarBaz
1ib/my_gem/woo/zoo.rb —> MyGem: :Woo: : Zoo

You can tune that a bit by collapsing directories, or by ignoring parts of the project, but that is the main idea.

e Naming conventions!
e} Similar to PHP’'s PSR-4 Inner simple constants

While a simple constant like HttpCrawler: :MAX_RETRIES can be defined in its own file:

e Foreach root directory, subdirectories define modules
. . # http_crawler/max_retries.rb

° Each subdirectory requires a new module HttpCrawler: :MAX RETRIES = 10
L4 Names are UnIfOFm|y formatted as Camelcase that is not required, you can also define it the regular way:
e Iffiles or classes don't match the expected convention, .

Zeitwerk will refuse to load it e e -

- - - . . . end

° We tell Zeitwerk which directories to look in, and it does

the reSt Root directories and root namespaces

Every directory configured with push_dir is called a root directory, and they represent root namespaces.

° By default the root namespace is Object but thisis also
configurable for a root directory

The default root namespace is Object
By default, the namespace associated to a root directory is the top-level one: Object .

For example, given

loader.push_dir("#{__dir__}/models")
loader.push_dir("#{__dir__}/serializers"))

these are the expected classes and modules being defined by these files:

models/user.rb -> User
serializers/user_serializer.rb -> UserSerializer

How does it werk?

Makes use of the .autoload() method

This is a core Ruby method on all objects
Lets us tell Ruby where to load a class from
The root namespace is Object

From: /Users/bkyriakou/Documents/workspace/code_snippets/pry/pry-test.rb:7 :

module end;

b I
L.
2.
3
4:
)

pry(main)> 1s Test

: binding.pry

[2] pry(main)> Test.autoload(:Foo, File.expand_path(
=> npil I -

[3] pry(main)> 1s T
constants: Foo

[4] pry(main)> § Te

From: /Users/bkyriakou/Documents/workspace/code_snippets/pry/test/foo.rb:2
Class name: Test::Foo
Number of lines: 5

class Foo
def self.hello

end
end
[5] pry(main)> Test::Foo.hello
=
[6] pry(main)> 1s Test

stants: Foo

A simple example

An example of a very simplified autoloader that
uses the principles Zeitwerk does

We create a class that will store an internal
reference to the current loader if it exists

https://aithub.com/benkyriakou/ztwrk

ZTWRK

.loader

attr_reader :root_dir

initialize(root_dir)
= root_dir

https://github.com/benkyriakou/ztwrk

A simple example

ZTWRK

load_dir(dir)

. . ruby_files(dir).each | relpath, abspath|
Now we add the main loading method Bun T O SR e
This first autoloads namespaces from Ruby files camelize(relpath.sub(/)

)

Then it autoloads any undefined namespaces from
namespace.autoload(element, abspath)

subdirectories
constant_ref is the equivalent of Zeitwerk's cref
method
o Takes a camelized relative path like “Foo: :Bar”
Returns the namespace (constant Foo) and the
element (symbol :Bar)

subdirectories(dir).each | relpath, abspath|
16 namespace, element = constant_ref(camelize(relpath))

namespace.const_defined?(element)

namespace.autoload(element, abspath)

load_dir(abspath)

https://aithub.com/benkyriakou/ztwrk

https://github.com/benkyriakou/ztwrk

A simple example

https:

Finally we add “autovivification”

This allows the loader to create module
namespaces for subdirectories without actually
loading anything

ithub.com/benkyriakou/ztwrk

22

ZTWRK

autovivify(abspath)
namespace, element = constant_ref(camelize(relpath(abspath)))
namespace.const_set(element, Module.new)

Kernel
alias_method :original_require :require

require(abspath)
ZTWRK. loader&.can_load?(abspath) && File.directory?(abspath)

ZTWRK . loader.autovivify(abspath)

original_require(abspath)

https://github.com/benkyriakou/ztwrk

/eitwerk in Rails

GOCARDLESS

Zeitwerk in Rails

Set up your autoload configuration in
application.rb using config.autoload_paths
This is passed to the autoloaders in
zeitwerk_integration.rb
This populates the autoloaders from the Rails
configuration defined
There are two autoloaders set up

o Rails.autoloaders.main

o Rails.autoloaders.once

https://quides.rubyonrails.or
autoloading_and_reloading_ constants.html

private
setup_autoloaders(enable_reloading)
Dependencies.autoload_paths.each | autoload_path|

File.directory?(autoload_path)

autoloader = \
autoload_once?(autoload_path) ? Rails.autoloaders.once : Rails.autoloaders.main

autoloader.push_dir(autoload_path)

autoloader.do_not_eager_load(autoload_path) eager_load?(autoload_path)
Rails.autoloaders.main.enable_reloading enable_reloading
Rails.autoloaders.each(&:setup)

https://guides.rubyonrails.org/autoloading_and_reloading_constants.html
https://guides.rubyonrails.org/autoloading_and_reloading_constants.html

Zeitwerk in Rails

e By defaultit adds all subdirectories of /app to
autoload_paths

e This does not work with most of our
namespaces, so we have to do some custom
configuration

e Wealso havetoadd /1lib as this has been
retired as a standard load path in Rails

https://quides.rubyonrails.org/
autoloading_and_reloading_constants.html

4 Autoload Paths

We refer to the list of application directories whose contents are to be autoloaded as autoload paths.
For example, app/models . Such directories represent the root namespace: Object .

b Autoload paths are called root directories in Zeitwerk documentation, but we'll stay with
"autoload path" in this guide.

Within an autoload path, file names must match the constants they define as documented here.

By default, the autoload paths of an application consist of all the subdirectories of app that exist
when the application boots ---except for assets, javascript, views ,--- plus the autoload paths of
engines it might depend on.

For example, if UsersHelper is implemented in app/helpers/users_helper.rb, the module is
autoloadable, you do not need (and should not write) a require call for it:

$ bin/rails runner 'p UsersHelper'
UsersHelper
Copy

Autoload paths automatically pick any custom directories under app . For example, if your application
has app/presenters, or app/services, etc., they are added to autoload paths.

The array of autoload paths can be extended by mutating config.autoload_paths, in
config/application.rb, but nowadays this is discouraged.

E Please, do not mutate ActiveSupport::Dependencies.autoload_paths, the public
interface to change autoload paths is config.autoload_paths .

https://guides.rubyonrails.org/autoloading_and_reloading_constants.html
https://guides.rubyonrails.org/autoloading_and_reloading_constants.html

Useful things to know

GOCARDLESS

Useful things to know

e Loadingin files in a non-Zeitwerk order (e.g.
requiring something during bootstrap) can break
the expected autoloading

o e.g.ifFoo::Bar isloaded during bootstrap,
Foo can no longer be autoloaded as the
namespace is taken

e You can enable logging in application.rb

o This outputs a lot of debugging
information about what is loaded

https://quides.rubyonrails.org/
autoloading_and_reloading_constants.html

10 Troubleshooting

The best way to follow what the loaders are doing is to inspect their activity.

The easiest way to do that is to throw

%07 Rails.autoloaders.log!
- Copy

to config/application.rb after loading the framework defaults. That will print traces to standard
output.

If you prefer logging to a file, configure this instead:

N Rails.autoloaders.logger = Logger.new("#{Rails.root}/log/autoloading.log")
- Copy

D, [2021-08-22T23:04:25.712957 #33923] DEBUG -- : Zeitwerk@rails.main: autoload set for

S Routes, to be autovivified from /Users/bkyriakou/Documents/workspace/payments-service/app/

/routes

D, [2021-08-22T23:04:25.713641 #33923] DEBUG -- : Zeitwerk@rails.main: file
/Users/bkyriakou/Documents/workspace/payments-service/lib/fund_flows/refund.rb is ignored
because FundFlows::Refund is already defined

D, [2021-08-22T23:04:25.713691 #33923] DEBUG -- : Zeitwerk@rails.main: file
/Users/bkyriakou/Documents/workspace/payments-service/lib/fund_flows/holdings.rb is
ignored because FundFlows::Holdings is already defined

D, [2021-08-22T23:04:25.713794 #33923] DEBUG -- : Zeitwerk@rails.main: autoload set for
FundFlows: :Config, to be autovivified from
/Users/bkyriakou/Documents/workspace/payments-service/lib/fund_flows/config

D, [2021-08-22T23:04:25.714062 #33923] DEBUG -- : Zeitwerk@rails.main: file
/Users/bkyriakou/Documents/workspace/payments-service/lib/fund_flows/collection.rb is
ignored because FundFlows::Collection is already defined

https://guides.rubyonrails.org/autoloading_and_reloading_constants.html
https://guides.rubyonrails.org/autoloading_and_reloading_constants.html

Useful things to know

6.2 Autoloading when the application boots

Applications can safely autoload constants during boot using a reloader callback:

e If your code needs to reload with the application,

or if you want to autoload constants during 827 Rails.application. reloader. to_prepare do
- $PAYMENT_GATEWAY = Rails.env.production? ? RealGateway : MockedGateway

initialization, you should use the application
reloader

We use this in some of our initializers already
This has proved more reliable than the Zeitwerk
autoloader’'s on_load method

end

That block runs when the application boots, and every time code is reloaded.

For historical reasons, this callback may run twice. The code it executes must be
™" idempotent.

However, if you do not need to reload the class, it is easier to define it in a directory which does not
belong to the autoload paths. For instance, 1lib is an idiomatic choice, it does not belong to the
autoload paths by default but it belongs to $LOAD_PATH. Then, in the place the class is needed at boot
time, just perform a regular require to load it.

https://quides.rubyonrails.org/
autoloading_and_reloading_constants.html

https://guides.rubyonrails.org/autoloading_and_reloading_constants.html
https://guides.rubyonrails.org/autoloading_and_reloading_constants.html

Questions?

pe

GOCARDLESS

